Polynomials whose Galois groups are Frobenius groups with prime order complement

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galois groups of prime degree polynomials with nonreal roots

In the process of computing the Galois group of a prime degree polynomial f(x) over Q we suggest a preliminary checking for the existence of non-real roots. If f(x) has non-real roots, then combining a 1871 result of Jordan and the classification of transitive groups of prime degree which follows from CFSG we get that the Galois group of f(x) contains Ap or is one of a short list. Let f(x) ∈ Q[...

متن کامل

Classification of finite simple groups whose Sylow 3-subgroups are of order 9

In this paper, without using the classification of finite simple groups, we determine the structure of  finite simple groups whose Sylow 3-subgroups are of the order 9. More precisely, we classify finite simple groups whose Sylow 3-subgroups are elementary abelian of order 9.

متن کامل

Finite groups with $X$-quasipermutable subgroups of prime power order

Let $H$, $L$ and $X$ be subgroups of a finite group$G$. Then $H$ is said to be $X$-permutable with $L$ if for some$xin X$ we have $AL^{x}=L^{x}A$. We say that $H$ is emph{$X$-quasipermutable } (emph{$X_{S}$-quasipermutable}, respectively) in $G$ provided $G$ has a subgroup$B$ such that $G=N_{G}(H)B$ and $H$ $X$-permutes with $B$ and with all subgroups (with all Sylowsubgroups, respectively) $...

متن کامل

Groups of Prime Power Order as Frobenius-wielandt Complements

It is known that the Sylow subgroups of a Frobenius complement are cyclic or generalized quaternion. In this paper it is shown that there are no restrictions at all on the structure of the Sylow subgroups of the FrobeniusWielandt complements that appear in the well-known Wielandt's generalization of Frobenius' Theorem. Some examples of explicit constructions are also given. 0. Introduction Let ...

متن کامل

Computing Galois Groups with Generic Resolvent Polynomials

Given an arbitrary irreducible polynomial f with rational coefficients it is difficult to determine the Galois group of the splitting field of that polynomial. When the roots of f are easy to calculate, there are a number of “tricks” that can be employed to calculate this Galois group. If the roots of f are solvable by radicals, for example, it is often easy to calculate by hand the Q-fixing au...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux

سال: 1994

ISSN: 1246-7405

DOI: 10.5802/jtnb.121